Quantum Teleportation and Entanglement

ثبت نشده
چکیده

While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Teleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel

We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...

متن کامل

Information and Errors in Quantum Teleportation

Quantum teleportation [1-3] is a striking illustration of the difference between classical and quantum communication processes [4]. In teleportation, communication is facilitated by entanglement. But state transmission is predicated on belief that the entanglement between the resource particles is perfect and the protocol steps are error-free, both of which it is impossible to establish uncondi...

متن کامل

Disentangling Nonlocality and Teleportation

Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cl...

متن کامل

ar X iv : q ua nt - p h / 99 07 04 1 v 2 2 5 Fe b 20 00 Entanglement Teleportation via Werner States

Transfer of entanglement and information is studied for quantum teleportation of an unknown entangled state through noisy quantum channels. We find that the quantum entanglement of the unknown state can be lost during the teleportation even when the channel is quantum correlated. We introduce a fundamental parameter of correlation information which dissipates linearly during the teleportation t...

متن کامل

Two-state Teleportation

Quantum teleportation with additional a priori information about the input state achieves higher fidelity than teleportation of a completely unknown state. However, perfect teleportation of two non-orthogonal input states requires the same amount of en-tanglement as perfect teleportation of an unknown state, namely one ebit. We analyse how well two-state teleportation can be achieved using ever...

متن کامل

Quantum teleportation of composite systems via mixed entangled states

We analyze quantum teleportation for composite systems, specifically for concatenated teleporation decomposing a large composite state into smaller states of dimension commensurate with the channel and partial teleportation teleporting one component of a larger quantum state . We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014